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FINAL PERFORMANCE REPORT 
 
Structure and Optical Properties of Noble Metal Nanoparticles 
Christine M. Aikens 
 
Objectives 
The statement of objectives for the work was: 

1) Understand the structural and electronic origins and therefore the conditions under 
which gold and silver nanoparticles display broad/molecular or sharp surface plasmon 
resonance (SPR) optical absorption behavior. 

The inconsistency between the sharp optical spectrum of Ag20 and related 
tetrahedra, the “molecular” optical spectrum of Au20 and Au25(SCH2CH2Ph)18

-, the 
broadened optical spectrum and essentially nonexistent SPR peak of 1-2 nm 
gold particles, the sharp or molecular optical spectrum of 2 nm silver particles, 
and the narrow SPR peak of larger (> 5 nm) gold and silver nanoparticles is not 
understood at the current time. One of the aims of this proposal is to fill this gap 
in fundamental understanding so that we can control the optical properties of 
nanoparticles in the 1-5 nm regime. 

2) Quantify the size-dependence of the absorption peak locations as a function of core 
shape, composition, and passivating ligand so that we can predict the optical properties 
of 1-20 nm clusters and choose synthetic targets for use in devices and sensors. 

Because the goal of this research is to ascertain systematic structure-property 
relationships for use in designing nanostructured materials with prescribed 
optical properties, the association of the nanoparticle composition and structure 
to the optical absorption spectrum must be well understood.  The size, shape, 
and composition of the metal core and the head group, alkyl or aryl linker, 
and functionalized tail are individual nanoparticle structural parameters that 
may be modified to change the peak location, intensity, and full width at half 
maximum (FWHM) of the predicted experimental optical absorption spectrum.  
Efficient methods of determining the FWHM will be assessed. 

3) Predict distance and orientation effects on the SPR location and width of interacting 
nanoparticle dimers for use in photonic and plasmonic applications. 

Aggregation of particles leads to changes in peak location and intensity, which 
depend on the interacting metal cores and the interparticle distance and 
orientation.  

 
Technical Approach 
 Density functional theory (DFT) was the primary method employed to achieve the work 
described in this report.  DFT is an electronic structure method based on quantum mechanics 
that is applicable to systems containing several hundred atoms such as the nanoparticles 
investigated in this work.  DFT in its current form requires an approximation to the exchange-
correlation functional; this research utilizes several different types of DFT including local density 
approximation (LDA), generalized gradient approximation (GGA), and asymptotically-corrected 
functionals.  The Aikens group has found that LDA functionals are inexpensive and accurate for 
determining the geometric structure of noble metal nanoparticles.  GGA functionals are useful 
when energetic quantities such as reaction energies and binding energies are needed, since 
LDA functionals are not accurate enough for this data.  Asymptotically-corrected functionals 
have been found to be the most accurate for determining excited states and optical absorption 
spectra of gold and silver nanoparticles; excitation calculations are performed using linear-
response time-dependent DFT (TDDFT). 



 Gold is a heavy element, and scalar relativistic effects must be included in quantum 
chemical calculations on systems containing this element.  In the work performed by the Aikens 
group, scalar relativistic effects are treated using the zeroth order regular approximation 
(ZORA).  For consistency, ZORA is used for both gold and silver nanoparticles. 
 The Amsterdam Density Functional (ADF) program (a commercial software package) is 
used for the work described in this report. 
 Because DFT is still limited to systems with several hundred atoms, one additional 
approach examined by the Aikens group involved treating a nanoparticle as a particle in a 
spherical well surrounded by ligands that were modeled as point charges.  The effects of the 
ligands on the orbital energy levels were determined by employing degenerate first order 
perturbation theory.  This new method is called the charge-perturbed particle in a sphere (CP-
PIS) model. 
 
Accomplishments/New Findings 
 One of the hypotheses related to objective 1 was that the unique “staple” motif inherent 
in thiolated gold and some thiolated silver 1-2 nm nanoparticles is responsible for the 
“molecular” nature of the optical absorption spectrum of these systems.  Several studies 
undertaken by the Aikens group have examined the origin of the optical absorption spectra of 
gold-thiolate and silver-thiolate nanoparticles and have shown that delocalized molecular 
orbitals in the nanoparticle core formed from the 6s(gold) or 5s(silver) atomic orbitals lie near 
the HOMO-LUMO gap.  These delocalized orbitals are similar to orbitals expected for particles 
in a spherical well (for nanoparticles with approximately spherical cores) or particles in a 
cylindrical well (for nanorods and nanowires or other elongated nanoparticles).  Since the core 
of a nanoparticle is well-described by a particle in a sphere (PIS) model, the Aikens group 
developed a new charge-perturbed PIS (CP-PIS) model to represent ligand-passivated 
nanoparticles.  This relatively simple model provides a correct qualitative description of the 
orbital splittings in thiolated gold and silver nanoparticles.  This splitting is responsible for the 
molecular-like optical absorption spectrum as well, so the CP-PIS model shows that the ligand 
arrangement is indeed responsible for the structured optical absorption spectra observed. 
 A second hypothesis related to objective 1 was that control over the thermodynamic 
stability of ligand-core interactions affects the final nanoparticle geometric structure (and hence 
its optical absorption spectrum).  A study on the fragmentation energies of RS(AuSR)n

- and 
RS(AgSR)n

- (R = H, CH3, Ph; n = 1-4) was proposed and carried out. The Aikens group 
determined that binding energies for silver-thiolate systems are smaller than those for gold-
thiolate systems; in addition, binding energies for phenyl thiolate are smaller than those for 
hydrogen and methyl thiolates.  However, it is still not known exactly how the differences in 
binding energies affect the final structure of the nanoparticle.  Additional studies in the Aikens 
group have elucidated the role of the reducing agent in the formation of gold-gold bonds in gold-
phosphine and gold-thiolate systems, which appears to depend on the type of ligand used in the 
system, but more work needs to be done to fully understand how the differing thermodynamic 
stability of gold and silver systems affects the resulting nanoparticle structure. 
 One of the hypotheses related to objective 2 was that multiple nanoparticle shapes can 
exhibit sharp surface plasmon resonance (SPR) absorption behavior that can be extrapolated to 
predict the peak locations for large nanoparticles.  As part of this grant, the Aikens group has 
shown that silver nanowires, octahedra, truncated octahedra, and icosahedra each display 
optical absorption peaks whose broadness depends on the number of electrons in the system; a 
“magic” number of electrons typically correlates with a sharp absorption spectrum.  This is due 
to the delocalized nature of the electrons and the resulting orbitals.  The peak positions can be 
extrapolated with increasing size of the system.  A second hypothesis related to this objective 
was that the interband (d to sp) transitions for gold decahedral systems would not increase in 
intensity at the same rate as the intraband (sp to sp) transitions, and thus these could be 



separated out.  This work is still ongoing, but it currently appears that the size of the system at 
which this would be possible may be larger than what is now practical with DFT. 
 A third hypothesis related to objective 2 was that the wavelength of the SPR band can 
be controlled by modifying the coordinating ligand head group and tail group.  Different head 
groups dramatically affect the optical spectra.  The effects of the tail groups are less noticeable.  
As proposed, the optical absorption spectra of p-substituted Au25(SPhX)18

- (X = H, F, Cl, Br, 
CH3, OCH3) [note: the Au38(SPhX)24 stoichiometry originally reported by the experimental group 
was later corrected to Au25(SPhX)18

-] were calculated and the HOMO-LUMO gaps were 
computed.  The HOMO-LUMO gaps and the low-energy peaks in the optical absorption 
spectrum (due to HOMO-LUMO and related transitions) were not significantly affected by the 
change in the tail group as expected.  The HOMO and LUMO energies and thus the redox 
potentials do change with the tail group, however.  In addition, the higher energy peaks that 
arise from transitions out of orbitals with contributions from ligand-based orbitals show a slight 
(0.1 eV) variation with tail group.  It was also determined by the Aikens group that the preferred 
orientation of the phenylthiol groups is slightly different than the established orientation of 
phenylethylthiol and other R groups, which has an impact on the optical absorption spectrum. 
 In order to determine the effect of vibrational motion on the width of the optical 
absorption peaks (objective 2), the Aikens group has undertaken combined molecular dynamics 
and TDDFT calculations on two systems: Ag20 and Au25(SH)18

-.  Work on these projects is still 
underway, but it appears that temperature effects leading to vibrational broadening of the 
absorption spectra could be sufficient to explain the origin of the peak width. 
 Finally, to address the effect of distance and orientation on the optical absorption spectra 
of nanoparticle aggregates (objective 3), eight different orientations of dimers of Ag20 tetrahedra 
were considered.  The Aikens group determined that tip-to-tip, tip-to-face, face-to-face, and 
edge-to-edge dimers result in somewhat different excitation spectra, although all orientations 
lead to a splitting of the monomer peak due to symmetry-lowering.  The Aikens group also 
demonstrated that TDDFT calculations can lead to low energy peaks that are thought to be 
charge-transfer artifacts, whereas configuration interaction singles (CIS) calculations do not 
exhibit these peaks.  In consequence, this work shows that future researchers should take care 
when using TDDFT to interpret the excitation spectra of nanoparticle dimers. 
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